
Mix & Match:
Resource Federation

Kristi Nikolla
Massachusetts Open Cloud



The Massachusetts Open Cloud
● Multiple Landlords: BU, MIT, Northeastern, Harvard, UMass

○ Universities want to administer their own hardware
○ Each university has their own auth framework, and will not trust a centralized Keystone
○ So they will want to set up OpenStack themselves

● Open Cloud eXchange
○ Competing service providers standing up services in their own OpenStack deployments
○ Users can combine resources from different service providers: “mix and match”



Resource Federation
● Allow OpenStack services to consume resources from services in other 

OpenStack deployments
a. Resources are volumes, images, snapshots, etc.

● Resource Federation is the first step towards OCX



Challenges
● Preserving API and user experience

○ Combine information from multiple providers
○ Uniquely qualifying resources

● Authentication and authorization
● Security
● Scalability
● Performance



Project: BigDataResearchCollab

volume1 volume2

project@
Northeastern 

University

project@
Boston 

University

Combining information: Meta-Projects

volume1

project@
MIT

img1

● Every resource is owned by a project
● Projects are mapped with each other to form a meta-project
● User is presented with combined view of all resources in meta-project



Uniquely Qualifying Resources
● Everything in OpenStack is identifying by a UUID
● UUIDs are unique, even across multiple service providers

○ We didn’t need to change the API to uniquely qualify the target resource
○ We can combine without naming conflicts



Project: BigDataResearchCollab

$ openstack volume list

ID Volume Name Service Provider

3294C96D...831DBCCB1F73 volume1 Northeastern University

AFB5236E...768B8BF5801C volume2 Northeastern University

890DD196...C017D93E1AA3 volume1 MIT

volume1 volume2

project@
Northeastern 

University

Boston 
University

volume1

project@
MIT

img1

project@
Boston 

University

vm1



Project: BigDataResearchCollab

$ openstack server add volume vm1 3294C96D...831DBCCB1F73

volume1 volume2

project@
Northeastern 

University

project@
Boston 

University

vm1 volume1

project@
MIT

img1



Crossing boundaries

Boston University Northeastern 
University

mixmatch
(Proxy)

Nova

Keystone

Cinder

Keystone



Authentication and Authorization
● Keystone-to-Keystone federation
● SAML2 assertion contains user 

attributes
○ Keystone maps roles on projects 

based on those attributes

○ We exploit this to implement the 
meta-project

Boston 
University

Northeastern 
University

Keystone Keystone



Boston University Northeastern 
University

mixmatch
(Proxy)

Nova

Keystone

Cinder

Keystone



Boston University

Northeastern 
University

mixmatch
(Proxy)

Nova

Keystone

Cinder

Keystone

MIT

Cinder

Keystone

where?



How It Works

Call Action

GET w/o UUID Aggregate

GET w UUID Find resource

PUT/PATH w UUID Find resource

DELETE w UUID Find resource

POST Be more explicit?
Header API to the proxy from the client

● Every request in OpenStack is done through the REST API
○ Resource UUID are a predictably located part of the URL
○ Proxy analyzes URL for UUID



Finding Resources
● Search by broadcasting

○ Proxy will query service providers 

until it finds the resource with the 
requested ID. 

○ Does not scale to many SPs

BU

MIT

NU

volume1

→GET volume1
←404 Not Found

→GET volume1
←200 OK



Performance Improvements
● Cache Tokens

○ Local Token → Service Provider, Project ID, Remote Project

● Cache Resource Mappings in DB after finding resources

Ideally, proxy should already know the location...



Finding Resources (part 2)
● Listen to notifications, and store in DB

○ More scalable, requires more trust

Boston University

MIT

mixmatch
(Proxy) Cinder

volume1

AMQP

mixmatch 
Agent

DB

volume1 
created in 
project



Data plane
● No performance degradation in data plane
● iSCSI

○ Just works™

○ Credentials for the volume are passed in API calls, so no more access is granted than 
needed.

● Ceph/RBD
○ Works, however...
○ All compute nodes must have all Ceph authentication keys
○ This requires a high amount of trust between service providers
○ We’re working with the Ceph developers to address these issues



Beyond Open Cloud eXchange
● Adding experimental services to a production cloud
● Partial upgrade of cloud services—standing up multiple versions at once
● Defense in depth—limiting scope of a security breach



Future Work
● Deploying in production
● Security

○ More granular permission model for Ceph/RBD
○ Limit information exposed from proxy agent

● Federation of networks across service providers
● Testing cross-attach with other Cinder backends
● Benchmarking the API overhead
● Becoming an official OpenStack project

Check us out!

http://info.massopencloud.org/blog/mixmatch-federation
https://github.com/openstack/mixmatch 

http://massopen.cloud/blog/mixmatch-federation
http://massopen.cloud/blog/mixmatch-federation
https://github.com/openstack/mixmatch
https://github.com/openstack/mixmatch

