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The Massachusetts Open Cloud
● Multiple Landlords: BU, MIT, Northeastern, Harvard, UMass

○ Universities want to administer their own hardware
○ Each university has their own auth framework, and will not trust a centralized Keystone
○ So they will want to set up OpenStack themselves

● Open Cloud eXchange
○ Competing service providers standing up services in their own OpenStack deployments
○ Users can combine resources from different service providers: “mix and match”



Resource Federation
● Allow OpenStack services to consume resources from services in other 

OpenStack deployments
a. Resources are volumes, images, snapshots, etc.

● Resource Federation is the first step towards OCX



Challenges
● Preserving API and user experience

○ Combine information from multiple providers
○ Uniquely qualifying resources

● Authentication and authorization
● Security
● Scalability
● Performance
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Combining information: Meta-Projects
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● Every resource is owned by a project
● Projects are mapped with each other to form a meta-project
● User is presented with combined view of all resources in meta-project



Uniquely Qualifying Resources
● Everything in OpenStack is identifying by a UUID
● UUIDs are unique, even across multiple service providers

○ We didn’t need to change the API to uniquely qualify the target resource
○ We can combine without naming conflicts
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$ openstack volume list

ID Volume Name Service Provider

3294C96D...831DBCCB1F73 volume1 Northeastern University

AFB5236E...768B8BF5801C volume2 Northeastern University
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$ openstack server add volume vm1 3294C96D...831DBCCB1F73
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Crossing boundaries
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Authentication and Authorization
● Keystone-to-Keystone federation
● SAML2 assertion contains user 

attributes
○ Keystone maps roles on projects 

based on those attributes

○ We exploit this to implement the 
meta-project
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How It Works

Call Action

GET w/o UUID Aggregate

GET w UUID Find resource

PUT/PATH w UUID Find resource

DELETE w UUID Find resource

POST Be more explicit?
Header API to the proxy from the client

● Every request in OpenStack is done through the REST API
○ Resource UUID are a predictably located part of the URL
○ Proxy analyzes URL for UUID



Finding Resources
● Search by broadcasting

○ Proxy will query service providers 

until it finds the resource with the 
requested ID. 

○ Does not scale to many SPs
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→GET volume1
←404 Not Found

→GET volume1
←200 OK



Performance Improvements
● Cache Tokens

○ Local Token → Service Provider, Project ID, Remote Project

● Cache Resource Mappings in DB after finding resources

Ideally, proxy should already know the location...



Finding Resources (part 2)
● Listen to notifications, and store in DB

○ More scalable, requires more trust
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Data plane
● No performance degradation in data plane
● iSCSI

○ Just works™

○ Credentials for the volume are passed in API calls, so no more access is granted than 
needed.

● Ceph/RBD
○ Works, however...
○ All compute nodes must have all Ceph authentication keys
○ This requires a high amount of trust between service providers
○ We’re working with the Ceph developers to address these issues



Beyond Open Cloud eXchange
● Adding experimental services to a production cloud
● Partial upgrade of cloud services—standing up multiple versions at once
● Defense in depth—limiting scope of a security breach



Future Work
● Deploying in production
● Security

○ More granular permission model for Ceph/RBD
○ Limit information exposed from proxy agent

● Federation of networks across service providers
● Testing cross-attach with other Cinder backends
● Benchmarking the API overhead
● Becoming an official OpenStack project

Check us out!

http://info.massopencloud.org/blog/mixmatch-federation
https://github.com/openstack/mixmatch 

http://massopen.cloud/blog/mixmatch-federation
http://massopen.cloud/blog/mixmatch-federation
https://github.com/openstack/mixmatch
https://github.com/openstack/mixmatch

