
Container History



How did we get here?
● Virtual Machines

○ Have existed in some form since the 
1960s

○ x86 was virtualized by VMWare in 
1998

○ Slow
■ Especially startup time

○ Resource Intensive
■ The operating system is 

duplicated for each VM
○ Layering too heavyweight to be 

effective for most use cases



While VMs were taking over the world
● Solaris Zones - 2005

● Linux Containers

○ selinux (Developed by the NSA) - 2000

○ cgroups (Developed by Google) - 2006

○ Linux Namespaces (mnt, pid, net, ipc, uts, 
user) - 2008

○ LXC - 2008

○ Docker - 2013 (March)



Docker
● The first 1 min demo:

○ dnf install docker
○ docker run -it --rm fedora /bin/bash

● Everyone gets it and it’s amazing
● Common patterns make it easy have 1 container per application component

○ Single process per container
○ Keeping state out of containers

■ Use persistent volumes and external datastores
■ Logs and metrics can be standardized and aggregated externally

○ Building dependencies into ancestor image layers
● However, you wouldn’t want to maintain a complex application with lots of components using 

a series of `docker run` commands



System Architecture
The moving pieces



What are the pieces?
● Docker

○ Container runtime and image distribution

● Kubernetes
○ Runtime and operational management of containers

● OpenShift
○ Lifecycle of applications - build, deploy, manage, promote
○ Manage tens to thousands of applications with teams



Kube



OpenShift APIs

Controllers

Authentication

Router Router

Docker RegistryBuilds of images

Storage servers Log servers

Metrics collection Source code / CI

OpenShift oc (login/projects)

OpenShift Web Console

Deployment

Software Defined 
Network



Concepts
OpenShift Nouns



Pods and Containers
● Fundamental unit in the system

○ Pod is a group of related containers on the same node
○ Each container can be its own image with its own env
○ Pods share an IP address and volumes

● Pods are transient and not “special”
○ Pods should be able to be deleted at any time
○ Storage can be detached and reattached elsewhere

Container

Pod Storage Volume

IP

Node
1:n 1:n

1:1

1:n



Pod Examples
Pod A

Tomcat

Pod C

Tomcat

Monitoring 
Agent

Pod B

Postgresql8080 5432

8080

Pod D

Postgresql 5432

8080Tomcat



Pods (cont.)



Connecting Pods
● Need a way for pod A to talk to pod B

○ Option 1: Hardcode IP address
○ Option 2: Query the server

● If there are 10 copies of pod B, which do you use?
○ Pick one randomly?
○ Load balance!

● What if it fails?
○ Want to have all copies of pod A talk to all copies of pod B



Services
● Abstract a set of pods as a single IP and port

○ Each host has a proxy that knows where other pods are
○ Simple TCP/UDP load balancing



Routes
● Getting external traffic into the cluster
● Reference DNS (www.google.com)

○ Wildcard DNS to provide a cluster default

● Uses service end points but bypasses the service 
proxy and routes directly to the pods

www.myapp.com Routers Pods



Deployments
● Define the lifecycle 

for a single image
○ Each deployment 

records a particular 
image and settings 
for that image at a 
point in time



Templates and Config
● Config is declarative description of topology
● Templates let you parameterize config

○ Simple key/value substitution with basic value generation



Building Images
● Allow infrastructure to build images

○ Source to Image (S2I) and Dockerfile builds
○ Integration with Jenkins and other build systems
○ Builds are run in containers under user resource limits
○ Integrated Registry

● Easy integration for existing build infrastructure
○ Push images into an image repository

● Easy integration with external source repos
○ GitHub and generic webhooks



Build Flow

IDE

Git Repo

Builder 
Image

Build

OCP Image 
Registry

Web Hook Commit App Image Push

Image 
Trigge
r

Deploy

Pod(s)
(App Image)

Image
Change 
Trigger



Resources
● Try out OpenShift for yourself

○ https://learn.openshift.com/

https://learn.openshift.com/


Demo


